Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Nutrition ; 118: 112273, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38096603

RESUMO

BACKGROUND: Skeletal muscle synthesizes, stores, and releases body L-glutamine (GLN). Muscle atrophy due to disabling diseases triggers the activation of proteolytic and pro-apoptotic cell signaling, thus impairing the body's capacity to manage GLN content. This situation has a poor therapeutic prognosis. OBJECTIVE: Evaluating if oral GLN supplementation can attenuate muscle wasting mediated by elevated plasma cortisol and activation of caspase-3, p38MAPK, and FOXO3a signaling pathways in soleus and gastrocnemius muscles of rats submitted to 14-day bilateral hindlimbs immobilization. METHODS: Animals were randomly distributed into six groups: non-immobilized rats (Control), control orally supplemented with GLN (1 g kg-1) in solution with L-alanine (ALA: 0.61 g kg-1; GLN+ALA), control orally supplemented with dipeptide L-alanyl-L-glutamine (DIP; 1.49 g kg-1), hindlimbs immobilized rats (IMOB), IMOB orally GLN+ALA supplemented (GLN+ALA-IMOB), and IMOB orally DIP supplemented (DIP-IMOB). Plasma and muscle GLN concentration, plasma cortisol level, muscle caspase-3 activity, muscle p38MAPK and FOXO3a protein content (total and phosphorylated forms), and muscle cross-sectional area (CSA) were measured. RESULTS: Compared to controls, IMOB rats presented: a) increased plasma cortisol levels; b) decreased plasma and muscle GLN concentration; c) increased muscle caspase-3 activity; d) increased total and phosphorylated p38MAPK protein content; e) increased FOXO3a and decreased phosphorylated FOXO3a protein content; f) reduced muscle weight and CSA befitting to atrophy. Oral supplementation with GLN+ALA and DIP was able to significantly attenuate these effects. CONCLUSIONS: These findings attest that oral GLN supplementation in GLN+ALA solution or DIP forms attenuates rats' skeletal muscle mass wasting caused by disuse-mediated muscle atrophy.


Assuntos
Glutamina , Hidrocortisona , Atrofia Muscular , Animais , Ratos , Caspase 3/metabolismo , Suplementos Nutricionais , Dipeptídeos/metabolismo , Dipeptídeos/farmacologia , Dipeptídeos/uso terapêutico , Glutamina/farmacologia , Músculo Esquelético , Atrofia Muscular/tratamento farmacológico , Atrofia Muscular/etiologia , Atrofia Muscular/metabolismo , Transdução de Sinais , Proteína Forkhead Box O3/efeitos dos fármacos , Proteína Forkhead Box O3/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
2.
Int J Dev Neurosci ; 83(7): 600-614, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37477051

RESUMO

Neonates have an immature immune system, which increases their vulnerability to infectious agents and inflammatory insults. The administration of the immunostimulatory agent lipopolysaccharide (LPS) has been shown to induce the expression of pro-inflammatory cytokines and cause behavior alterations in rodents at different ages. However, the effects of LPS administration during the neonatal period and its consequences during immune system maturation remain to be elucidated. We showed here that a single intraperitoneal administration of LPS in rats on postnatal day (PND) 7 caused early and variable alterations in TNF-α, S100B and GFAP levels in the cerebral cortex, CSF and serum of the animals, indicating long-term induction of neuroinflammation and astroglial reactivity. However, on PND 21, only GFAP levels were increased by LPS. Additionally, LPS induced oxidative stress and altered energy metabolism enzymes in the cerebral cortex on PND 21, and caused neurodevelopment impairment over time. These data suggest that neuroinflammation induction during the neonatal period induces glial reactivity, oxidative stress and bioenergetic disruption that may lead to neurodevelopment impairment and cognitive deficit in adult life.


Assuntos
Antioxidantes , Lipopolissacarídeos , Animais , Ratos , Antioxidantes/farmacologia , Animais Recém-Nascidos , Lipopolissacarídeos/farmacologia , Doenças Neuroinflamatórias , Córtex Cerebral , Metabolismo Energético
3.
Metab Brain Dis ; 36(4): 523-543, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33580861

RESUMO

Phenylketonuria (PKU) is one of the commonest inborn error of amino acid metabolism. Before mass neonatal screening was possible, and the success of introducing diet therapy right after birth, the typical clinical finds in patients ranged from intellectual disability, epilepsy, motor deficits to behavioral disturbances and other neurological and psychiatric symptoms. Since early diagnosis and treatment became widespread, usually only those patients who do not strictly follow the diet present psychiatric, less severe symptoms such as anxiety, depression, sleep pattern disturbance, and concentration and memory problems. Despite the success of low protein intake in preventing otherwise severe outcomes, PKU's underlying neuropathophysiology remains to be better elucidated. Oxidative stress has gained acceptance as a disturbance implicated in the pathogenesis of PKU. The conception of oxidative stress has evolved to comprehend how it could interfere and ultimately modulate metabolic pathways regulating cell function. We summarize the evidence of oxidative damage, as well as compromised antioxidant defenses, from patients, animal models of PKU, and in vitro experiments, discussing the possible clinical significance of these findings. There are many studies on oxidative stress and PKU, but only a few went further than showing macromolecular damage and disturbance of antioxidant defenses. In this review, we argue that these few studies may point that oxidative stress may also disturb redox signaling in PKU, an aspect few authors have explored so far. The reported effect of phenylalanine on the expression or activity of enzymes participating in metabolic pathways known to be responsive to redox signaling might be mediated through oxidative stress.


Assuntos
Encéfalo/metabolismo , Modelos Animais de Doenças , Estresse Oxidativo/fisiologia , Fenilcetonúrias/metabolismo , Transdução de Sinais/fisiologia , Animais , Antioxidantes/administração & dosagem , Encéfalo/efeitos dos fármacos , Humanos , Oxirredução/efeitos dos fármacos , Fenilcetonúrias/dietoterapia , Fenilcetonúrias/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos
4.
RGO (Porto Alegre) ; 69: e20210028, 2021. graf
Artigo em Inglês | LILACS-Express | LILACS, BBO - Odontologia | ID: biblio-1340565

RESUMO

ABSTRACT Optical fluorescence detection aims to identify precursor lesions, little noticeable to the human eye, and oral cancer. Squamous cell carcinoma or spinocellular carcinoma is a malignant neoplasm that affects the mouth more. In this article, two clinical cases are analyzed, treated with the use of two types of equipment, namely: the photoevidenciation by optical fluorescence of light-emitting violet wavelength of 405nm, power of 100mW, which is luminous radiation, not Ionizing and in the adjuvant treatment, we used low-power laser therapy, power 100mW, with two wavelengths of 808nm infrared, for pain relief, and the red 660nm, for oral mucositis. In Photodynamic therapy, the Photosensitizing Chimiolux® (methylene blue) was used to control Candida albicans. From these cases, we discuss how a more assertive diagnostic hypothesis can save a life and save time, resources, and efforts for the correct diagnosis of the pathology compared to a biopsy and histopathology negative for neoplasia. We conclude that optical fluorescence has excellent social relevance due to its potential to help the professional not specialized in the establishment of early diagnosis of oral cancer. Early diagnosis improves the rates of death caused by this carcinoma, which would extend the post-diagnosis survival and decrease the financial and emotional costs for the patient and family.


RESUMO A detecção óptica por fluorescência visa identificar lesões precursoras, pouco perceptíveis ao olho humano, e do câncer oral. O carcinoma de células escamosas ou carcinoma espinocelular (CEC), é a denominação de uma neoplasia maligna que acomete mais a boca. Neste artigo, são analisados dois casos clínicos, tratados com a utilização de dois equipamentos, a saber: o de fotoevidenciação por fluorescência óptica de emissão de luz violeta de comprimento de onda de 405nm, potência de 100mW, que é radiação luminosa não ionizante; e no tratamento coadjuvante, utilizou-se a laserterapia de baixa potência, potência 100mW, com dois comprimentos de onda de infravermelho 808nm, para alívio de dor, e o vermelho 660nm, para as mucosites orais. Na terapia fotodinâmica, empregou-se o fotossensibilizador Chimiolux® (azul de metileno) para controle de Candida albicans. A partir desses casos, discutimos como uma hipótese diagnóstica mais assertiva pode salvar uma vida e poupar tempo, recursos e esforços para o correto diagnóstico da patologia se comparado a uma biópsia e histopatológico negativo para neoplasia. Por fim, concluímos que a fluorescência óptica tem grande relevância social devido a seu potencial de auxiliar o profissional não especialista no estabelecimento de um diagnóstico precoce do câncer oral, melhorando os índices de óbito causados por esse carcinoma, o que estenderia a sobrevida pós-diagnóstico e diminuiria os custos financeiros e emocionais do paciente e familiares.

5.
Int J Dev Neurosci ; 80(5): 369-379, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32379904

RESUMO

Maple Syrup Urine Disease (MSUD) is caused by a severe deficiency in the branched-chain ketoacid dehydrogenase complex activity. Patients MSUD accumulate the branched-chain amino acids leucine (Leu), isoleucine, valine in blood, and other tissues. Leu and/or their branched-chain α-keto acids are linked to neurological damage in MSUD. When immediately diagnosed and treated, patients develop normally. Inflammation in MSUD can elicit a metabolic decompensation crisis. There are few cases of pregnancy in MSUD women, and little is known about the effect of maternal hyperleucinemia on the neurodevelopment of their babies. During pregnancy, some intercurrences like maternal infection or inflammation may affect fetal development and are linked to neurologic diseases. Lipopolysaccharide is widely accepted as a model of maternal inflammation. We analyzed the effects of maternal hyperleucinemia and inflammation and the possible positive impact the use of ibuprofen in Wistar rats on a battery of physics (ear unfolding, hair growing, incisors eruption, eye-opening, and auditive channel opening) and neurological reflexes (palmar grasp, surface righting, negative geotaxis, air-righting, and auditory-startle response) maturation parameters in the offspring. Maternal hyperleucinemia and inflammation delayed some physical parameters and neurological reflexes, indicating that both situations may be harmful to fetuses, and ibuprofen reversed some settings.

6.
Free Radic Biol Med ; 145: 87-102, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31505269

RESUMO

Skeletal muscle disuse results in myofibrillar atrophy and protein degradation, via inflammatory and oxidative stress-mediated NF-kB signaling pathway activation. Nutritional interventions, such as l-glutamine (GLN) supplementation have shown antioxidant properties and cytoprotective effects through the modulation on the 70-kDa heat shock protein (HSP70) expression. However, these GLN-mediated effects on cell signaling pathways and biochemical mechanisms that control the myofibrillar protein content degradation in muscle disuse situations are poorly known yet. This study investigated the effects of oral GLN plus l-alanine (ALA; GLN â€‹+ â€‹ALA-solution) supplementation, either in their free or dipeptide (L-alanyl-l-glutamine-DIP) form, on GLN-glutathione (GSH) axis and cytoprotection mediated by HSP70 protein expression in the slow-twitch soleus and fast-twitch gastrocnemius skeletal muscle of rats submitted to 14-days of hindlimb immobilization-induced disuse muscle atrophy. Forty-eight Wistar rats were distributed into 6 groups: hindlimb immobilized (IMOB group) and hindlimb immobilized orally supplemented with either GLN (1 g kg-1) plus ALA (0.61 g kg-1) â€‹(GLN â€‹+ â€‹ALA-IMOB group) or 1.49 â€‹g â€‹kg-1 of DIP (DIP-IMOB group) and; no-immobilized (CTRL) and no-immobilized supplemented GLN â€‹+ â€‹ALA and DIP baselines groups. All animals, including CTRL and IMOB rats (water), were supplemented via intragastric gavage for 14 days, concomitantly to immobilization period. Plasma and muscle GLN levels, lipid (thiobarbituric acid reactive substances-TBARS) and protein (carbonyl) peroxidation, erythrocyte concentration of reduced GSH and GSH disulfide (GSSG), plasma and muscle pro-inflammatory TNF-α levels, muscle IKKα/ß-NF-kB signaling pathway and, the myofibrillar protein content (MPC) were measured. The MPC was significantly lower in IMOB rats, compared to CTRL, GLN â€‹+ â€‹ALA, and DIP animals (p â€‹< â€‹0.05). This finding was associated with reduced plasma and muscle GLN concentration, equally in IMOB animals. Conversely, both GLN â€‹+ â€‹ALA and DIP supplementation restored plasma and muscle GLN levels, which equilibrated GSH and intracellular redox status (GSSG/GSH ratio) in erythrocytes and skeletal muscle even as, increased muscle HSP70 protein expression; attenuating oxidative stress and TNF-α-mediated NF-kB pathway activation, fact that reverberated on reduction of MPC degradation in GLN â€‹+ â€‹ALA-IMOB and DIP-IMOB animals (p â€‹< â€‹0.05). In conclusion, the findings shown herein support the oral GLN â€‹+ â€‹ALA and DIP supplementations as a therapeutic and effective nutritional alternative to attenuate the deleterious effects of the skeletal muscle protein degradation induced by muscle disuse.


Assuntos
Glutamina/farmacologia , Inflamação/tratamento farmacológico , Músculo Esquelético/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Administração Oral , Animais , Antioxidantes/farmacologia , Creatina Quinase/genética , Suplementos Nutricionais , Modelos Animais de Doenças , Humanos , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Músculo Esquelético/patologia , NF-kappa B/genética , Proteólise/efeitos dos fármacos , Ratos , Ratos Wistar
7.
Metab Brain Dis ; 34(6): 1649-1660, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31352540

RESUMO

Phenylketonuria (PKU) is the most common inborn error of amino acid metabolism. Usually diagnosed within the first month of birth, it is essential that the patient strictly follow the dietary restriction of natural protein intake. Otherwise, PKU impacts the development of the brain severely and may result in microcephaly, epilepsy, motor deficits, intellectual disability, and psychiatric and behavioral disorders. The neuropathology associated with PKU includes defects of myelination, insufficient synthesis of monoamine neurotransmitters, amino acid imbalance across the blood-brain barrier, and involves intermediary metabolic pathways supporting energy homeostasis and antioxidant defenses in the brain. Considering that the production of reactive oxygen species (ROS) is inherent to energy metabolism, we investigated the association of creatine+pyruvate (Cr + Pyr), both energy substrates with antioxidants properties, as a possible treatment to mitigate oxidative stress and phosphotransfer network impairment elicited in the brain of young Wistar rats by chemically-induced PKU. We induced PKU through the administration of α-methyl-L-phenylalanine and phenylalanine for 7 days, with and without Cr + Pyr supplementation, until postpartum day 14. The cotreatment with Cr + Pyr administered concurrently with PKU induction prevented ROS formation and part of the alterations observed in antioxidants defenses and phosphotransfer network enzymes in the cerebral cortex, hippocampus, and cerebellum. If such prevention also occurs in PKU patients, supplementing the phenylalanine-restricted diet with antioxidants and energetic substrates might be beneficial to these patients.


Assuntos
Antioxidantes/farmacologia , Encéfalo/efeitos dos fármacos , Creatina/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Fenilcetonúrias/metabolismo , Ácido Pirúvico/farmacologia , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Modelos Animais de Doenças , Metabolismo Energético/efeitos dos fármacos , Fenilalanina/análogos & derivados , Fenilcetonúrias/induzido quimicamente , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo
8.
Environ Sci Pollut Res Int ; 26(2): 1892-1901, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30460648

RESUMO

The most commonly used solution in chrome plating bath is chromic acid (hexavalent Cr), and a considerable amount of mists is released into the air and consequently produce hazards to workers. Thus, the aim of this study was to evaluate whether the biomarker of exposure to metals, specially Cr levels, presents associations with hematological and biochemical parameters and if they can alter the activity of enzymes that contain thiol groups such as pyruvate kinase, creatine kinase, adenylate kinase, and δ-aminolevulinate dehydratase. Fifty male chrome plating workers were used for exposed group and 50 male non-exposed workers for control group. For that, biological monitoring was performed through quantification of metals on total blood and urine by inductively coupled plasma mass spectrometry (ICP-MS) and enzyme activity was performed by spectrometry in erythrocytes. In addition, chromium levels in water was quantified and ecotoxicology assay was performed with Allium cepa test. The results demonstrated that blood and urinary chromium levels in exposed group were higher than the control group (p < 0.0001). Furthermore, decreased activity of enzymes was found in those that contain thiol groups from exposed group when compared with the control group (p < 0.001). The water analysis did not present a statistical difference between control and exposed groups (p > 0.05), demonstrating that water did not seem to be the source of contamination. In summary, our findings indicated some toxicology effects observed in the exposed group, such as thiol enzyme inhibition, mainly associated with occupational exposure in chrome plating and besides the presence of other metals, and Cr demonstrated to influence the activity of the enzymes analyzed in this research.


Assuntos
Biomarcadores/metabolismo , Exposição Ocupacional/estatística & dados numéricos , Compostos de Sulfidrila/metabolismo , Adulto , Biometria , Cromo , Ecotoxicologia , Humanos , Masculino
9.
Mol Neurobiol ; 55(5): 4068-4077, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-28585188

RESUMO

Although many studies show the toxic effects of proline, recently it has been reported some anti-inflammatory effect of this amino acid. Our principal objective was to investigate the effects of proline on the alterations caused by LPS (lipopolysaccharide) administration in the cerebral cortex and cerebellum of young Wistar rats. The animals were divided into four groups: control (0.85% saline); proline, (12.8 µmol of proline/g body weight from day 7 to 13; 14.6 µmol of proline/g body weight from day 14 to 17 and 16.4 µmol of proline/g body weight from day 18 to 21); LPS (1 mg/g body weight); LPS plus proline. The animals were killed at 22 days of age, 12 h after the last injection, by decapitation without anesthesia. The brain cortex and cerebellum were separated for chemical determinations. The effects of proline and LPS in the cerebral cortex and cerebellum on the expression of S100B and GFAP, oxidative stress parameters, enzymes of phosphoryl transfer network activity, and mitochondrial respiration chain complexes were investigated. Two-way ANOVA showed that the administration of proline did not alter the analyzed parameter in cerebral cortex and cerebellum. On the other hand, LPS administration caused a change in these parameters. Besides, the co-administration of proline and LPS showed the ability of Pro in preventing the effects of LPS. These results indicated that LPS induces inflammation, oxidative stress, and alters energy parameters in cerebral cortex and cerebellum of the rats. Moreover, co-administration of Pro was able to prevent these harmful effects of LPS.


Assuntos
Anti-Inflamatórios/farmacologia , Cerebelo/patologia , Córtex Cerebral/patologia , Prolina/farmacologia , Animais , Cerebelo/efeitos dos fármacos , Córtex Cerebral/efeitos dos fármacos , Transporte de Elétrons/efeitos dos fármacos , Proteína Glial Fibrilar Ácida/metabolismo , Lipopolissacarídeos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos Wistar , Proteínas S100/metabolismo
10.
Mol Neurobiol ; 55(6): 5101-5110, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28840535

RESUMO

ß-Alanine occurs naturally in the human central nervous system and performs different functions. It can act as either a neurotransmitter or a neuromodulator, depletion of taurine levels and competitive antagonist of γ-aminobutyric acid (GABA). The ß-amino acid accumulation exerts an important biological function as delay in brain development, oxidative stress and disturbances in energy metabolism, characterized as an inborn error of metabolism classified as ß-alaninemia. We evaluated the effects of the chronic administration of ß-alanine on some parameters of oxidative stress and enzymes of energy metabolism in cerebral cortex and cerebellum of 21-day-old Wistar rats. The animals received peritoneal injections of ß-alanine (300 mg/kg of body weight), and the controls received the same volume (10 µl/g of body weight) of saline solution (NaCl 0.9%), twice a day at 12-h interval, from the 7th to the 21st postpartum day. We observed that ß-amino acid was able to increase the levels of reactive oxygen species (ROS) in the two tissues; however, only in cerebral cortex total content of sulfhydryl was increased. ROS are possibly acting on antioxidant enzymes glutathione peroxidase (GPx) (cerebral cortex and cerebellum) and superoxide dismutase (SOD) (cerebellum) inhibiting their activities. We also evaluated the activities of enzymes of the phosphoryl transfer network, where we observed an increase in hexokinase and cytosolic creatine kinase (Cy-CK) activities; however, it decreased glyceraldehyde 3-phosphate dehydrogenase (GAPDH), pyruvate kinase (PK) and lactate dehydrogenase (LDH) activities, in both tissues. Besides, the ß-alanine administration increased the activities of complex II, complex IV and succinate dehydrogenase (SDH). Those results suggest that the chronic administration of ß-alanine causes cellular oxidative damage, significantly changing the energy metabolism.


Assuntos
Cerebelo/patologia , Córtex Cerebral/patologia , Metabolismo Energético/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , beta-Alanina/toxicidade , Animais , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Ratos Wistar , beta-Alanina/administração & dosagem
11.
Neurotox Res ; 32(4): 575-584, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28612295

RESUMO

Maple syrup urine disease is an autosomal metabolic disease caused by a deficiency of branched-chain α-keto acid dehydrogenase complex activity. In this disease occur the accumulation of the branched-chain amino acids leucine, isoleucine, and valine and their corresponding branched-chain α-keto acids in the tissues and body fluids. The affected patients may present psychomotor development delay and mental retardation. The pathophysiology of maple syrup urine disease is not entirely understood, but leucine seems to be the primary neurotoxic metabolite. Creatine and pyruvate are energetics and antioxidants substances. In this study, we investigated the effects of leucine administration and co-administration of creatine plus pyruvate on several parameters of oxidative stress and phosphoryl transfer network in cerebral cortex and hippocampus of Wistar rats treated from the 8th to the 21st postpartum day. Leucine induced oxidative stress and diminished the activities of pyruvate kinase, adenylate kinase, cytosolic and mitochondrial creatine kinase. Co-administration of creatine plus pyruvate prevented the alterations provoked by leucine administration on the oxidative stress and the enzymes of phosphoryltransfer network. These results indicate that chronic administration of leucine may stimulate oxidative stress and alters the enzymes of phosphoryltransfer network in the cerebral cortex and hippocampus of the rats. It is possible that these effects may contribute, along with other mechanisms, to the neurological dysfunction found in patients affected by maple syrup urine disease. In this case, it is possible that creatine plus pyruvate supplementation could benefit to the patients.


Assuntos
Creatina/farmacologia , Leucina/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Ácido Pirúvico/farmacologia , Aminoácidos de Cadeia Ramificada/metabolismo , Animais , Antioxidantes/farmacologia , Córtex Cerebral/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Ratos Wistar , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
12.
Mol Neurobiol ; 54(6): 4496-4506, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-27356917

RESUMO

Sarcosine is an N-methyl derivative of the amino acid glycine, and its elevation in tissues and physiological fluids of patients with sarcosinemia could reflect a deficient pool size of activated 1-carbon units. Sarcosinemia is a rare inherited metabolic condition associated with mental retardation. In the present study, we investigated the acute effect of sarcosine and/or creatine plus pyruvate on some parameters of oxidative stress and energy metabolism in cerebral cortex homogenates of 21-day-old Wistar rats. Acute administration of sarcosine induced oxidative stress and diminished the activities of adenylate kinase, GAPDH, complex IV, and mitochondrial and cytosolic creatine kinase. On the other hand, succinate dehydrogenase activity was enhanced in cerebral cortex of rats. Moreover, total sulfhydryl content was significantly diminished, while DCFH oxidation, TBARS content, and activities of SOD and GPx were significantly enhanced by acute administration of sarcosine. Co-administration of creatine plus pyruvate was effective in the prevention of alterations provoked by sarcosine administration on the oxidative stress and the enzymes of phosphoryltransfer network. These results indicate that acute administration of sarcosine may stimulate oxidative stress and alter the energy metabolism in cerebral cortex of rats. In case these effects also occur in humans, they may contribute, along with other mechanisms, to the neurological dysfunction of sarcosinemia, and creatine and pyruvate supplementation could be beneficial to the patients.


Assuntos
Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Metabolismo Energético , Estresse Oxidativo , Sarcosina/administração & dosagem , Adenilato Quinase/metabolismo , Animais , Creatina Quinase/metabolismo , Fluoresceínas/metabolismo , Glutationa Peroxidase/metabolismo , Modelos Biológicos , Oxirredução , Ratos Wistar , Superóxido Dismutase/metabolismo
13.
Metab Brain Dis ; 31(2): 363-8, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26563127

RESUMO

In the present study, we developed an acute chemically induced model of sarcosinemia in Wistar rats. Wistar rats of 7, 14 and 21 postpartum days received sarcosine intraperitoneally in doses of 0.5 mmol/Kg of body weight three time a day at intervals of 3 h. Control animals received saline solution (NaCl 0.85 g%) in the same volume (10 mL/Kg of body weight). The animals were killed after 30 min, 1, 2, 3 or 6 h after the last injection and the brain and the blood were collected for sarcosine measurement. The results showed that plasma and brain sarcosine concentrations achieved levels three to four times higher than the normal levels and decreased in a time-dependent way, achieving normal levels after 6 hours. Considering that experimental animal models are useful to investigate the pathophysiology of human disorders, our model of sarcosinemia may be useful for the research of the mechanisms of neurological dysfunction caused by high tissue sarcosine levels.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/induzido quimicamente , Encéfalo/efeitos dos fármacos , Doenças Mitocondriais/induzido quimicamente , Sarcosina Desidrogenase/deficiência , Doença Aguda , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Ratos Wistar , Sarcosina/metabolismo , Sarcosina/farmacologia
14.
Metab Brain Dis ; 31(3): 529-37, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26573865

RESUMO

The aim of this study was to investigate the effects of phenylalanine on oxidative stress and some metabolic parameters in astrocyte cultures from newborn Wistar rats. Astrocytes were cultured under four conditions: control (0.4 mM phenylalanine concentration in the Dulbecco's Modified Eagle Medium (DMEM) solution), Phe addition to achieve 0.5, 1.0 or 1.5 mM final phenylalanine concentrations. After 72 h the astrocytes were separated for the biochemical measurements. Overall measure of mitochondrial function by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and cell viability measured by lactate dehydrogenase (LDH) assays indicated that phenylalanine induced cell damage at the three concentrations tested. The alteration on the various parameters of oxidative stress indicated that phenylalanine was able to induce free radicals production. Therefore, our results strongly suggest that Phe at concentrations usually found in PKU induces oxidative stress and consequently cell death in astrocytes cultures. Considering the importance of the astrocytes for brain function, it is possible that these astrocytes alterations may contribute to the brain damage found in PKU patients.


Assuntos
Astrócitos/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Degeneração Neural/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fenilalanina/farmacologia , Fenilcetonúrias/metabolismo , Adenilato Quinase/metabolismo , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Células Cultivadas , Creatina Quinase/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Degeneração Neural/patologia , Fenilcetonúrias/patologia , Piruvato Quinase/metabolismo , Ratos , Ratos Wistar
15.
Mol Neurobiol ; 51(3): 1184-94, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-24961569

RESUMO

Tyrosine accumulates in inborn errors of tyrosine catabolism, especially in tyrosinemia type II. In this disease caused by tyrosine aminotransferase deficiency, eyes, skin, and central nervous system disturbances are found. In the present study, we investigated the chronic effect of tyrosine methyl ester (TME) and/or creatine plus pyruvate on some parameters of oxidative stress and enzyme activities of phosphoryltransfer network in cerebral cortex homogenates of 21-day-old Wistar. Chronic administration of TME induced oxidative stress and altered the activities of adenylate kinase and mitochondrial and cytosolic creatine kinase. Total sulfhydryls content, GSH content, and GPx activity were significantly diminished, while DCFH oxidation, TBARS content, and SOD activity were significantly enhanced by TME. On the other hand, TME administration decreased the activity of CK from cytosolic and mitochondrial fractions but enhanced AK activity. In contrast, TME did not affect the carbonyl content and PK activity in cerebral cortex of rats. Co-administration of creatine plus pyruvate was effective in the prevention of alterations provoked by TME administration on the oxidative stress and the enzymes of phosphoryltransfer network, except in mitochondrial CK, AK, and SOD activities. These results indicate that chronic administration of TME may stimulate oxidative stress and alter the enzymes of phosphoryltransfer network in cerebral cortex of rats. In case this also occurs in the patients affected by these disorders, it may contribute, along with other mechanisms, to the neurological dysfunction of hypertyrosinemias, and creatine and pyruvate supplementation could be beneficial to the patients.


Assuntos
Córtex Cerebral/enzimologia , Creatina/farmacologia , Estresse Oxidativo/fisiologia , Ácido Pirúvico/farmacologia , Transferases/metabolismo , Tirosina/farmacologia , Animais , Córtex Cerebral/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Masculino , Estresse Oxidativo/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Ratos , Ratos Wistar , Tirosina/análogos & derivados
16.
Neurochem Res ; 39(8): 1594-602, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24916961

RESUMO

Phenylketonuria (PKU) is the most frequent inborn error of metabolism. It is caused by deficiency in the activity of phenylalanine hydroxylase, leading to accumulation of phenylalanine and its metabolites. Untreated maternal PKU or hyperphenylalaninemia may result in nonphenylketonuric offspring with low birth weight and neonatal sequelae, especially microcephaly and intellectual disability. The mechanisms underlying the neuropathology of brain injury in maternal PKU syndrome are poorly understood. In the present study, we evaluated the possible preventive effect of the co-administration of creatine plus pyruvate on the effects elicited by phenylalanine administration to female Wistar rats during pregnancy and lactation on some enzymes involved in the phosphoryltransfer network in the brain cortex and hippocampus of the offspring at 21 days of age. Phenylalanine administration provoked diminution of body, brain cortex an hippocampus weight and decrease of adenylate kinase, mitochondrial and cytosolic creatine kinase activities. Co-administration of creatine plus pyruvate was effective in the prevention of those alterations provoked by phenylalanine, suggesting that altered energy metabolism may be important in the pathophysiology of maternal PKU. If these alterations also occur in maternal PKU, it is possible that pyruvate and creatine supplementation to the phenylalanine-restricted diet might be beneficial to phenylketonuric mothers.


Assuntos
Córtex Cerebral/efeitos dos fármacos , Creatina/administração & dosagem , Metabolismo Energético/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Lactação/efeitos dos fármacos , Fenilalanina/toxicidade , Ácido Pirúvico/administração & dosagem , Animais , Córtex Cerebral/metabolismo , Quimioterapia Combinada , Metabolismo Energético/fisiologia , Feminino , Hipocampo/metabolismo , Lactação/metabolismo , Gravidez , Distribuição Aleatória , Ratos , Ratos Wistar
17.
Cell Biochem Funct ; 32(5): 438-44, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24633892

RESUMO

The mechanisms that lead to the onset of organoselenium intoxication are still poorly understood. Therefore, in the present study, we investigated the effect of acute administration of 3-methyl-1-phenyl-2-(phenylseleno)oct-2-en-1-one on some parameters of oxidative stress and on the activity of creatine kinase (CK) in different brain areas and on the behaviour in the open field test of 90-day-old male rats. Animals (n = 10/group) were treated intraperitoneally with a single dose of the organoselenium (125, 250 or 500 µg kg(-1) ), and after 1 h of the drug administration, they were exposed to the open field test, and behaviour parameters were recorded. Immediately after they were euthanized, cerebral cortex, hippocampus and cerebellum were dissected for measurement of thiobarbituric acid reactive substances (TBARS), carbonyl, sulfhydryl, catalase (CAT), superoxide dismutase (SOD) and CK activity. Our results showed that the dose of 500 µg kg(-1) of the organoselenium increased the locomotion and rearing behaviours in the open field test. Moreover, the organochalcogen enhanced TBARS in the cerebral cortex and cerebellum and increased the oxidation of proteins (carbonyl) only in the cerebral cortex. Sulfhydryl content was reduced in all brain areas, CAT activity enhanced in the hippocampus and reduced in the cerebellum and SOD activity increased in all brain structures. The organoselenium also inhibited CK activity in the cerebral cortex. Therefore, changes in motor behaviour, redox state and energy homeostasis in rats treated acutely with organoselenium support the hypotheses that the brain is a potential target for the organochalcogen action. Ltd.


Assuntos
Encéfalo/metabolismo , Compostos Organosselênicos/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Animais , Encéfalo/enzimologia , Catalase/metabolismo , Creatina Quinase/metabolismo , Masculino , Compostos Organosselênicos/química , Ratos , Ratos Wistar , Superóxido Dismutase/metabolismo
18.
Antioxidants (Basel) ; 3(2): 323-38, 2014 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-26784874

RESUMO

The objective of this study was to investigate the antioxidant and hepatoprotective effect of the chronic use of conventional (CGJ) or organic (OGJ) grape juice from the Bordeaux variety grape on oxidative stress and cytoarchitecture in the liver of rats supplemented with a high-fat diet (HFD) for three months. The results demonstrated that HFD induced an increase in thiobarbituric acid-reactive substances (TBARS), catalase (CAT) activity and 2',7'-dihydrodichlorofluorescein (DCFH) oxidation and a decrease in sulfhydryl content and superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities. HFD also induced hepatocellular degeneration and steatosis. These alterations were prevented by CGJ and OGJ, where OGJ was more effective. Therefore, it was concluded that HFD induced oxidative stress and liver damage and that the chronic use of grape juice was able to prevent these alterations.

19.
Mol Cell Biochem ; 380(1-2): 161-70, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23620342

RESUMO

ß-Alanine is a ß-amino acid derivative of the degradation of pyrimidine uracil and precursor of the oxidative substrate acetyl-coenzyme A (acetyl-CoA). The accumulation of ß-alanine occurs in ß-alaninemia, an inborn error of metabolism. Patients with ß-alaninemia may develop neurological abnormalities whose mechanisms are far from being understood. In this study we evaluated the effects of ß-alanine administration on some parameters of oxidative stress and on creatine kinase, pyruvate kinase, and adenylate kinase in cerebral cortex and cerebellum of 21-day-old rats. The animals received three peritoneal injections of ß-alanine (0.3 mg /g of body weight) and the controls received the same volume (10 µL/g of body weight) of saline solution (NaCl 0.85 %) at 3 h intervals. CSF levels of ß-alanine increased five times, achieving 80 µM in the rats receiving the amino acid. The results of ß-alanine administration in the parameters of oxidative stress were similar in both tissues studied: reduction of superoxide dismutase activity, increased oxidation of 2',7'-dihydrodichlorofluorescein, total content of sulfhydryl and catalase activity. However, the results of the phosphoryltransfer network enzymes were similar in all enzymes, but different in the tissues studied: the ß-alanine administration was able to inhibit the enzyme pyruvate kinase, cytosolic creatine kinase, and adenylate kinase activities in cerebral cortex, and increase in cerebellum. In case this also occurs in the patients, these results suggest that oxidative stress and alteration of the phosphoryltransfer network may be involved in the pathophysiology of ß-alaninemia. Moreover, the ingestion of ß-alanine to improve muscular performance deserves more attention in respect to possible side-effects.


Assuntos
Cerebelo/efeitos dos fármacos , Córtex Cerebral/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Fosfotransferases/metabolismo , beta-Alanina/farmacologia , Adenilato Quinase/metabolismo , Animais , Catalase/metabolismo , Cerebelo/metabolismo , Córtex Cerebral/metabolismo , Creatina Quinase/metabolismo , Fluoresceínas/metabolismo , Humanos , Masculino , Erros Inatos do Metabolismo/sangue , Oxirredução/efeitos dos fármacos , Piruvato Quinase/metabolismo , Ratos , Ratos Wistar , Compostos de Sulfidrila/metabolismo , Superóxido Dismutase/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , beta-Alanina/sangue , beta-Alanina/líquido cefalorraquidiano
20.
J Bioenerg Biomembr ; 45(5): 449-57, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23471523

RESUMO

Interactions of chemicals with cerebral cellular systems are often accompanied by similar changes involving components in non-neural tissues. On this basis, indirect strategies have been developed to investigate neural cell function parameters by methods using accessible cells, including platelets and/or peripheral blood lymphocytes. Therefore, here it was investigated whether peripheral blood markers may be useful for assessing the central toxic effects of methylmercury (MeHg). For this purpose, we investigated platelet mitochondrial physiology in a well-established mouse model of MeHg-induced neurotoxicity, and correlated this peripheral activity with behavioural and central biochemical parameters. In order to characterize the cortical toxicity induced by MeHg (20 and 40 mg/L in drinking water, 21 days), the behavioral parameter namely, short-term object recognition, and the central mitochondrial impairment assessed by measuring respiratory complexes I-IV enzyme activities were determined in MeHg-poisoned animals. Neurotoxicity induced by MeHg exposure provoked compromised cortical activity (memory impairment) and reduced NADH dehydrogenase, complex II and II-III activities in the cerebral cortex. These alterations correlated with impaired systemic platelet oxygen consumption of intoxicated mice, which was characterized by reduced electron transfer activity and uncoupled mitochondria. The data brought here demonstrated that impaired systemic platelet oxygen consumption is a sensitive and non-invasive marker of the brain energy deficits induced by MeHg poisoning. Finally, brain and platelets biochemical alterations significantly correlated with cognitive behavior in poisoned mice. Therefore, it could be proposed the use of platelet oxygen consumption as a peripheral blood marker of brain function in a mouse model MeHg-induced neurotoxicity.


Assuntos
Plaquetas/metabolismo , Encéfalo/metabolismo , Síndromes Neurotóxicas/sangue , Consumo de Oxigênio/fisiologia , Animais , Biomarcadores/sangue , Encéfalo/patologia , Modelos Animais de Doenças , Masculino , Compostos de Metilmercúrio , Camundongos , Síndromes Neurotóxicas/metabolismo , Neurotoxinas , Distribuição Aleatória
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...